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ABSTRACT

Suppose that we are given a set of n elements e.,, ..., e which are
i n
to be arranged in some order. At each unit of time a request is made

to retrieve one of these elements - e being requested (independently

i Pi >0, Pi =1 , The cost of the

retrieval is taken to be the ordered position of the element requested.

of the past) with probability P

=3

The problem of interest is to determine the optimal ordering so as to
minimize the long run average cost. Clearly if the Pi were known

the optimal ordering would simply be to order the elements in decreasing
order of the ;El:s . In fact even if the fi‘s were unknown we could
do as well asymptotically by ordering the elements at each unit of time
in decreasing order of the number of previous requests for them. 1In

this paper we first consider the case in which the only memory allowed

at any time is the ordering of the elements at that time; in other words,
the only type of reordering rules we allow are ones in which the reordered
permutation of elements at any time is only allowed to depend on the
present ordering and the position of the element requested. We show that
the rule which always moves the requested element one close;\to the front
of the line minimizes the average position of the element runested among
a wide class of rules for all probability vectors of the fdém Pl =p ,
P2 = coe = Pn = %—E—% . In fact, we establish this under a stronger
optimality condition - namely the criterion of stochastically minimizing

the asymptotic position of the element requested.

We also consider the above problem under the previse that additional memory
is allowed. In particular we allow the decision-maker to utilize such
rules as "only make a change (according to some preassigned rule) if the
same element has been requested k times in a row." We show that as k

approaches infinity we can do as well as if we knew the values of the ﬁ; $

and in addition we show that the convergence is monotone.
l .

\
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We then allow for the possibility of randomization. We first consider
policies which at every unit of time follow some given rule with probability
a and do nothing (make no reordering) with probability 1 - o ; and show
that their average costs are independent of a . However if we allow

the randomization constant to be a function of the position of the element
requested (one instance would be a policy which when the element selected

is in position 1 moves it to the front with probability o, and leaves
the ordering unchanged with probability 1 - ui) then the average cost
depends on the sequence of randomization constants. Interestingly

enough this is not the case for the one-closer rule whose average cost

remains invariant under such randomization.
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OPTIMAL LIST ORDER UNDER PARTIAL MEMORY CONSTRAINTS
by

Y. C. Kan and S. M. Ross

0. INTRODUCTION AND SUMMARY

Suppose that we are given a set of n elements el, vEne

are to be arranged in some order. At each unit of time a request is made

e which
n

to retrieve one of these elements - e, being requested (independently

of the past) with probability Pi » Pi =0 , Pi = 1 . The cost i the

Ll e F=

retrieval is taken to be the ordered position of the element requested.
The problem of interest is to determine the optimal ordering so as
to minimize the long run average cost. Clearly if the Pi were known
the optimal ordering would simply be to order the elements in decreasing
order of the Pi's . In fact even if the Pi’s were unknown we could
do as well asymptotically by ordering the elements at each unit of time
in decreasing order of the number of previous requests for them. However
the problem becomes more interesting if we do not allow such memory storage

as would be necessary for the above rule but rather restrict ourselves to

a more limited memory storage. In [ 5] the case was considered where the

only memory allowed at any time was the ordering of the elements at that
time; in other words the only type of reordering rules allowed in [ 5]

are ones in which the reordered permutation of elements at any time is

only allowed to depend on the present ordering and the position of the
element requested - we call such rules no-memory rules. A no-memory

rule was said to be optimal in [ 5] if its average cost as a function of
the probability vector P is minimal among all rules for every probability

vector P having 0 < Pi <l,1=1, ..., n . Whereas it is not obvious




that an optimal rule exists it was conjectured in [ 5] that the rule which
always moves the requested element one position closer to the front (called

the transposition rule) is optimal. Though this conjecture was not proved

—

it was shown in [ 5] that the transposition rule always has a smaller

average cost than the one which moves the requested element to the front

of the line.*

; In Section 1 of the paper we consider the above problem under the pre-

| mise that additional memory is allowed. In particular we allow the decision-

i maker to utilize such rules as '"only make a change (according to some

L preassigned rule) if the same element has been requested k times in a row."

We show that as k approaches infinity we can do as well as if we knew the

values of the P1 , and in addition we show that the convergence is monotone.
In Section 2 we allow for the possibility of randomization. We first

consider policies which at every unit of time follow some given (nonmemory

and nonrandomized) rule with probability &« and do nothing (make no re-

ordering) with probability 1 - a ; and show that their average costs are

independent of a . However if we allow the randomization constant to be a

function of the position of the element requested (one instance would bhe a
policy which when the element selected is in position i moves it to the
front with probability a, and leaves the ordering unchanged with probability
1 - ai) then the average cost depends on the sequence of randomization
constants. Interestingly enough this is not the case for the (conjectured

optimal) transposition rule whose average cost remains invariant under such

randomization.

*
If the present ordering is el,ez,e3,ea and element ey is requested then
the transposition rule leads to the new ordering e1se5,85,e, whereas the

front of the line rule leads to ey,81,e,,8, -




In the final section we consider the original model where the only
rules allowed are ones whose reordering is based on the present ordering
and the position of the element requested. We show that the transposition
rule is optimal among a wide class of rules for all probability vectors
of the form Pl By P2 = se0 = Pn = %—E—%-. In fact we establish this

under a stronger optimality condition - namely the criterion of stochastically

minimizing the asymptotic position of the element requested.
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1. K-IN-A-ROW POLICIES

Consider any rule R which after each request reorders the list

solely as a function of the present ordering and the position of the element
requested and suppose now that we are allowed to follow the policy where
we only make a change in the list order (according to rule R) if the same
element has been requested k times in a row. (Such policies would require
two additional counters of memory space - one for keeping track of the
last element requested and the other keeping track of the number of times
in a row it had been requested.) Once an element has been requested k
times in a row we reorder the list according to R and then start over
again as far as waiting for another run of k 1identical requests.

The sequence of list orderings which result under the above policy
can most easily be analyzed as a semi-Markov process with the state at
any time being the ordering at that time and the epochs of transition
being the times at which a run of k identical requests have occurred.
We start by computing the probability that any given run of k identical

requests were all requests for element i .,

Proposition 1.1:

Given a sequence of independent multinomial trials - each resulting

n
in outcome i with probability Py o E P ™ 1 . Then the probability
1

that a run of kl successive trials all resulting in outcome number 1

occurs before any run of k successive 1 outcomes, 1i = 2,

i vy T
equals
k k
1 1)
py A - Pl)/(l =
n k k
) pii(l . pi)/(l » pii)
i=1

— . SEES—.
[ . R - PRI T =




Proof:

We first compute the expected number of coin tosses, call it E[T] ,

until a run of N successive heads occur when the tosses are independent

and each lands on heads with probability p . By conditioning on the
time of the first nonhead we obtain

N

E(T] = ] (1L - pp
j=1

Y+ BT + N

Solving the above for E[T] yields

N
E[T]’N*'(-I—;_'R)_Ejj-l

P
P ges
and, simplifying, we obtain
1l +p+ «o + pN-l (1 - pN)
BLT) = N sk
P p (1 -p)

Now consider the (infinite) sequence of multinomial trials as specified

in the statement of the proposition. Let us say that an i-success occurs
whenever we obtain a run of ki successive i outcomes. Then by renewal
theory the rate of i-successes is just 1 divided by the expected time
between i-successes and so the proportion of successes that are 1

successes is (with probability 1)

k K,
o p. Y1 - p )/(1 - p.l)
2o/ ¥ am@) = —3 1 -
E(Ti) j=1 j %1 kj kj) ,
-p /(1 - p,
oLE P (1 pj) ( Py

where T1 is the time between i~successes. |
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But each time a success (that is an i-success for any 1) occurs every-
thing restarts itself and so the limiting proportion of successes that are
of type 1 must also equal the probability that an i-success occurs before

any j-success, j # i .||

Now in a semi-Markov process if we let L denote the limiting
probability of being in state 1 for the embedded Markov chain which looks

at the process only when transitions occur and we let denote the mean

e -
time until the next transition when in state i then the limiting propor-

tion of time the state is i equals niui/i Hence since in our

g
problem the mean time spent in any state is constant--it is just the

expected time to obtain a run of k requests for the same element--it
follows that the limiting proportion cf time spent in each state is equal to
the limiting probabilities for the embedded Markov chain which only considers
the successive orderings when transitions (i.e., runs of k in a row) occur.

Thus it follows that the performance of the policy which uses rule R

only when there have been k requests in a row for the same element is
exactly the same as the performance of rule R in the case where the request
probabilities are no longer Pl, vy Pn but rather are now given by

p (), ()

iy B where
n

p (0 P - 7 /(1 - ¥

i n % ; y K '
jglp (o~ P )/(1 p)

i 3 3

The next lemma shows that as k increases the proportion of requests
(in the embedded chain) for the element having the largest request probability

increases to 1; among the remaining requests the proportion of those that are




for the element having the second largest request probability also increases

to 1, etec.
Lemma 1,.2:
i

§ i B R P7 > ese > P then
2 n

(0
= t1 as kto,{=1],

(k)

Proof:

We must show that

- - %)

= $ 1 as
Fonter - P /{1 - 2"
I By - ep/(1 - ef)

j=1

By dividing numerator and denominator by Pi/(l =

suffices to show that

(172" - 1
As the above equals ”
2/B.)" - 1
J
Lemma 1,3:
* . g
+0 as x t+« when b >a>1.
S |

k
P 1 - P,
- | . + 0 as k ¢+ » when
P k
¢
]

j2l

£

+

=
!

k ;
5 we see that it

> P,
J

the result follows Lemma 1.3. |
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Proof:

X
The derivative of é;—:—k will be negative if

bxlnb
SR |

of b when b > 1, which is easily established upon differentiation. ||

but this follows from the fact that is an increasing function

Theorem 1.4:

Let R be any rule which moves the element requested strictly closer
to the front (unless it is already in the initial position in which case
it remains there) and leaves the relative ordering of the other elements
unchanged. Then under the policy which follows rule R only when there
have been k requests in a row for the same element the proportion of time

the element with the jth largest request probability is in position j

goes to 1 as k goes to = ,

Proof:

Suppose the elements are numbered so that Pl > P2 RN Pn .
By Lemma 1.2 it follows that the proportion of reorderings that result
in element 1 being moved closer to the front of the line goes to 1 as k
becomes large. Hence it follows that the proportion of time that element

1 is in position 1 also goes to 1 as k gets larger. The remainder of

the argument is similar.||




Thus we see that as k goes to infinity the proportion of time that
the ordered list corresponds to the optimal ordering when the Pi's are
known goes to 1. Hence the average cost under anv of the policies specitied

fn Theorem 1.4 converges to what the average cost would be if the Pi's are
. th

known - namely B where P is the i intgest of P,y «.ay P
1;1 (1) (i) 1

From the results of Lemma 1.2 {t would also seem reasonable that this con-
vergence would be monotone. We will verity this monotone convergence for
the easi{est rule to analyze, namely the one which moves the requested
element to the front of the line.

Now under the front of the line rule {f the elements have probabilities
Pl. S g P“ then the expected posftion (with vespect to the limiting
distribution) of the element requested can be expressoed as

n

Average Cost = y P‘ E{posftion ot element i
jel ¥

= )} P, ¥ P(1 precedes j)

n
- V Y p P‘/\P‘ + Fi\
§=1 ¢} :
where we have used the fact that P{{ precedes j} {s the probability
that after a long time the most recent request for efther { or | was
for { , which {s easily seen to equal P‘ (Pi + P,\ «  The above formula

was derived fn [ 1], (3], [4]) and [5].

Hence we want to show that

n
L . ) ) )
Yoo r:k v:k‘,(v:k ' v:k ) ¢ tn k.
j=1 14} |
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To prove this we first introduce the concepts of majorization and

Schur functions. We say the vector x = (xl, e xn) majorizes the
vector y = (yl, i yn) s Written as x > ¢ 1f
m

% X > g Feen o mELo e B =~ L
g1 B Ty @

and

b3
1

s

]
s y
T e

X and

. th
where x(i) ¥ y(i) are the i largest values of Xps cees X

Ypr cees Yy respectively.
The symmetric function £ is said to be a Schur concave function if

£(x) < £f(y) whenever x >y . The following criterion for determining

>
m

if a function is Schur concave is due to Ostrowski.

Theorem: (Ostrowski)

10

A differentiable symmetric function f 1is Schur concave if and only if

f(x) 3 (x)

(x1 - X,) e = ™, £ 0 for all x .

Proof:

See [2], p. 47.

We are now ready for




Proposition 1.5:

The function

n
H(x) = §
j=1 i

I 2 it %y . % >0

is a Schur concave function.

Proof :
3H
3:39 ) "i
1 i#1
= 2 X
i#1
Therefore
dH(x) dH(x)
(xl.-x2) 3Ix T o )

1 2

2 2 9
Ixs 2.3 % § x%te + %)%
i 1 381 j 1 |

2/ 2
X3 (xi + xl)

2 2
2(x, ~x,) | J xS Nx %)% - ) x;ltx, +x)"
: [1#1 . o R ]

As we see that this is nonpositive, the result follows from the Ostrowski

theorem. | |

B
H
P

‘-‘_.“#cg..ammwu.‘ﬁh" e i




Theorem 1.6:

If the front of the line rule is only utilized when the same element

has been requested k times in a row then the average cost of this policy,

n
namely E Z ng)Pik)/(P§k) + Pik)) , is a decreasing function of k .
j=1 i#j

Proof:

This result will follow from the previous proposition upon showing

that

(k+1) P(k+1)

k) (k)
1 g eeey n P

(
P Py 77h eees P

3|v

Assume without loss of generality that the elements are numbered so that

Pl 2P,z Pn which will imply the same orderings for the vector z(k)

Let

)
p
Aiz) - ;——1———, E %L, oo
Z P(l)
j=1 3

and note that from Lemma 1.2, we have that

(kD) (k)

i oA v ok R cheg B e

As it is easy to establish (by inductiom on j) that

3 n
T (1 = Aig)) = 7 pil) ek PR
1=1 1=3+1

the result follows.

oy

T ——
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2. RANDOMIZATION

The reason that the k~in-a-row policies do better than the no-memory
reordering rules is that these latter rules make changes too frequently.

For instance if we were allowed perfect memory then the best rule would be to
order the elements in decreasing order of the number of requests for them.
Hence, after a while, reorderings become infrequent - for instance if n = 4
and the total number of requests for elements 1 through 4 are at present

20, 60, 10, 80 then the optimal ordering would be €,1€p,€),8y and would
remain so for at least the next 10 periods regardless of the elements
requested in this time span.

Another approach to slowing down changes in list order is to allow for
randomized policies. 1In particular consider any no-memory rule R and
consider the policy which when the element requested is in position i
follows the dictates of rule R with probability 3y and leaves the
present ordering unchanged with probability 1 - e for given a;

0 < :i <1,1i=1, ..., n. We first note that if the randomization value

a is the same for all i , say «, = @ , then the average cost for the

i i

randomized policy is the same as that of the original rule R .

r
.
—

Proposition

If a, Z=a , i=1, ..., n then the average cost of the randomized

i
policy is independent of a .

Proof:

We can analyze the sequence of orderings as a semi-Markov process where
a transition occurs whenever the outcome of the randomization results in

rule R being followed. As this occurs with probability a independent

N T s e A 2]

e e ——— e e —y- : o e

R
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of the particular order it follows that the mean time spent in each state

during a visit is 1/a for every state. Hence the limiting probabilities
are exactly the same as those of the embedded Markov chain which considers
the orderings only at times where R 1is followed. As these limiting

probabilities are clearly the same as when a =1 the result follows.]l

In general the average cost of a randomized policy based on the rule R

i will depend on the values of the a However an interesting exception is

i
when R is taken to be the (conjectured optimal) transposition rule. For

this case we first note the following lemma which was also proved in [ 5]

for the special case @ 21

e

Lemma 2.2:

For the randomized policy based on the transposition rule and using

randomization constants li v & % Lo sy B 4

(2.1) Pi Pr (il, vy ij+l’ij’ e in)

j+1 L} i“) - Pi Pr (il,

vy dyed
, ) +1’
- j

where il’ e in is any permutation of 1,2, ..., n and Pr (il, P in)
is the stationary probability that the list order is (il, g in) given

that the stated policy is employed.

Proof:

By multiplying both sides of Equation (2.1) by a,

e
341 we see that

(2.1) is equivalent to stating that rate at which the Markov chain goes

from any state s to s is equal to the rate at which it goes from

s to s ; or in other words, it states that the Markov chain is time

reversible. Now it is well-known that a necessary and sufficient condition
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k2 i
for time reversibility is that for any sequence of states s,s ,8°, ..., S ,8
the transition probabilities must satisfy P lP y 0 B { =
s,s s ,s" s ,s
P g P 1 that this is the case is easily verified for this particu-
s,s R

lar model. (For instance if n = 3 and the sequence of states is
a,2,3),(,1,3),(2,3,1),(3,2,1),(3,1,2),(1,3,2),(1,2,3) the product of

the transition probabilities going from left to right is

3 3.2
aP, a3 3 P313Pla PlJ3P aza3PquP3 whereas in the reverse direction

it is a,P.a.P.a.P.a.P.a.P,a. P, = 333277) 3
$ G353%279%3% %2 07 %0y ™ 2,857, Pl ) .

Since the stationary probabilities are obtained from the set of equations

(2.1) which do not depend on the a, » we have

Theorem 2.3:

The average cost of any randomized policy based on the transposition

rule is independent of the randomization constants a .
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3. TRANSPOSITION RULE OPTIMALITY WHEN P, =p , P, = %—f—% o B e R }

1-2
= ce0e = P = = q

In this section we shall suppose that Pl -5 ., Pz . ¥ |

In general under any rule, the average cost can be obtained by analyzing the
Markov chain of n! states where the state at any time corresponds to the

ordering at that time. However for the Pi of the form above, as all of

the elements 2 through n are identical (as they have the same probability
of being requested) we can obtain the average cost by analyzing the much
simpler Markov chain of n states with the state being the position of

element 1.

N SR ey 5

Consider the following restricted class of rules which when an element
is requested and found in position 1 , move the element to position ji
and leave the relative positions of the other elements unchanged. In i
addition we suppose that ji <41 for 41 %1, Jl =1 and ji Z_ji_l .
4 % 3. cusp B «  THe sat {j1 ;s 1w 1, ...; 0} characterizes & rule in
this class.

For a given rule in the above class let

k(i) = max {2 < 1}

i FPY)

In other words, for any i , an element in any of the positions
i,i+1, ..., 1+ k(i) will, if requested, be moved to a position less

than or equal to 1{i .

For a specified rule in the above class let us denote the stationary

probabilities when this rule is employed by




R — e S

17

.- Pr{el is in position i} , i =1, ..., n

n

S1 = Z ”j = Pr(el ig in a position > 1} . 4 = 0,1, ..., 0 ~1 .
j=i+1

Before writing down the steady state equations it may be worth noting

the following:

(1) Any element moves toward the back of the list at most one

position at a time.

s

(i1) If an element is in position i and neither it nor any of
the elements in the following k(i) positions are requested

it will remain in position 1i .

R PAPU N SR Rere e

(iii) Any element in one of the positions 1i,i + 1, e e 1+ k(d)

will be moved to a position < i if requested.

The steady state probabilities can now easily be seen to be:

%1% Sy * Bt Yy o B * (8 - 8, )ak()

or

Si = aisi-l + (1 - ai)si+k(i) s el L S S s = L F
| ||
} o 8. =5,98 =0 & |
[6) n i
: {
: where ﬁ
- _qk() |

$3+4) 3 TG +p

: - T N 1T
p—c— g
R

e s

e

.
— row— P—~ T ke
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Now consider a special rule of the above class, namely the trans-
position rule which has ji o= kw2 L w jl = 1 . Let the
corresponding Si be denoted by S; for the transposition rule. Then
from Equation (3.1) we have, since k(i) = 1 . thar

' '
oo D Y Ve

1 P+q

or, equivalently,
t = 5 q ¥ o '
si+1 si p (si Si-l)

which, iterating, implies

r
' = ' - q o '
si+r si+r—l (p) (Si Si-l)

Summing the above equations from r = 1, ., ' we obtain

) o
' - b v o_ gt S e S i
S g T Si—l)[p+ +(P)]’ Spave Lo

Now consider any other rule R of the considered class and let k(i) be
as defined for that rule. Now from the above we see that for the trans-

position rule

q q k(1)
' e ! = i i\ .58

Staxcey = % ¢ Gy si-l)(9+ +(p) )
or, equivalently

(3.3) S! = b.S!

= '
£ " iy T AL RS

i+k (1)

where

e ————— O R
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k(1)

% (q/p) + ¢+ + (q/p) L
(3.4) b TR L L

1+ (q/p) + +++ + (q/p)

) ' = ' -
| and Sn g SO ]

We are now ready to prove

w

Theorem 3.1:

e T —_——

! If p>1l/a , then §' < §; for all i.

If p <1l/n, then Si 28; forall 1.

T

Proof:

Consider the case p > 1/n which is equivalent to P > q and note

that in this case

1 1
2, =] =« ——= 5] . =b. .
= > - 3
i T ;i) q 1+q/p+ o + (q/p)k(l) i

Now define a Markov chain with states 0,1, ..., n and transition

probabilities
PO,O & Pn,n T
(3.5) ‘ci if §=1-1
Pi' = | o (LR S | A A (Y
J ll -, if § =1+ k()

\

Let fi denote the probability that this Markov chain ever enters state 0

given that it starts in state i . Then fi satisfies

. ®=ooE + (1 -

1 ifia1 )£ e LRSS T |

€17 4k (1)

T 1 i PRETI (= P
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Hence, as it is well known that the above set of equations has a unique
solution, it follows from (3.1) that if we take ci equal to ai for all
i , then fi will equal the Si of rule R , and if we let ¢; = bi .
\ then Ei equals S; <« Ler Xr(g) and Xr(g) denote the state at time
r of the Markov chain defined by (3.5) when g equals respectively a; and

by - Now, as P{X,(a) > j | X5(@) = i} and P{X;(B) > j { Xy() = i} are both

increasing in i , for all j , and as
| = } 3 = 1}
P{X, (@) 23 | Xy(@) = 1} < P{X;(B) 25 | X, (@) = 1}
for all j , it can be shown (see Theorem &4 of [6]) that

P(X (@) >3 | Xp@ = i} < PX (D) 2 j } X, () = i}

Hence,

v P{xt(é) = 0} Z_P{Xr(g) = (0 for all r

implying that

s, > 8!
b =%

When p < 1/n , then a, i_bi , and the above inequality is reversed.| |

Thus for all rules in the considered class, the asymptotic position
of element 1 will be stochastically larger (smaller) than it would be
under the transposition rule when p > 1/n (p < 1/n)

Now consider any cost function whose cost of requesting an element
in position i--call it g(i)=--is an increasing function of 1 .

Letting X denote the (asymptotic) position of element 1, we have that

the average expected cost can be expressed as




i . s R YI
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E(g(l) + «+¢ + - 2(X
Efcost] = pE[g(X)] + (1 - p) (g(1) By lg(n) 2(X)] :
The above follows by conditioning on whether or not element 1 is requested
and then noting that if element 1 is not requested, then any of the re-

maining n - 1 elements are equally likely to be. Hence,

E[COSC] = (P o _1_';2) E[g(x)] T & P) (&(1) e esie b g(n))

n-1 n - 1

’

and thus if p > 1/n , the expected cost is minimized by minimizing
E[g(X)] and if p < 1/n by maximizing E[g(X)] . But as stochastically
minimizing (maximizing) X is equivalent to minimizing (maximizing)
E{g(X)] , for every increasing function g , it follows that the expected

cost is minimized by the transposition rule.




(1]

(6]
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